The influence of weighting the k-occurrences on hubness-aware classification methods

author: Nenad Tomašev, Artificial Intelligence Laboratory, Jožef Stefan Institute
published: Nov. 4, 2011,   recorded: October 2011,   views: 2866


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Hubness is a phenomenon present in many highdimensional data sets. It is related to the skewness in the distribution of k-occurrences, i.e. occurrences of data points in k-neighbor sets of other data points. Several hubnessaware methods that focus on exploiting this phenomenon have recently been proposed. In this paper, we examine the potential impact of weighting the k-occurrences, by taking into account the distance between the respective data points, on hubness-aware nearest-neighbor methods, more specifically hw-kNN, h-FNN and HIKNN. We show that such distance-based weighting can be both advantageous and detrimental and that it influences different methods in different ways.

See Also:

Download slides icon Download slides: sikdd2011_tomasev_hubness_01.pdf (245.7 KB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: