Sequence-based Prediction of Protein Secretion Success in Aspergillus niger

author: Bastiaan van den Berg, The Delft Bioinformatics Lab, Delft University of Technology (TU Delft)
published: Oct. 14, 2010,   recorded: September 2010,   views: 150

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

The cell-factory Aspergillus niger is widely used for industrial enzyme production. To select potential proteins for large-scale production, we developed a sequence-based classifier that predicts if an over-expressed homologous protein will successfully be produced and secreted. A dataset of 638 proteins was used to train and validate a classifier, using a 10-fold cross-validation protocol. Using a linear discriminant classifier, an average accuracy of 0.85 was achieved. Feature selection results indicate what features are mostly defining for successful protein production, which could be an interesting lead to couple sequence characteristics to biological processes involved in protein production and secretion.

See Also:

Download slides icon Download slides: prib2010_vandenberg_spps_01.pdf (1.5┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: