Optimizing the Blur-Noise Tradeoff with Multiple-Photo Capture

author: Samuel Hasinoff, Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, MIT
published: Jan. 12, 2011,   recorded: December 2010,   views: 3487


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Capturing multiple photos at different focus settings is a powerful approach for reducing optical blur, but how many photos should we capture within a fixed time budget? We develop a framework to analyze optimal capture strategies balancing the tradeoff between defocus and sensor noise, incorporating uncertainty in resolving scene depth. We derive analytic formulas for restoration error and use Monte Carlo integration over depth to derive optimal capture strategies for different camera designs, under a wide range of photographic scenarios. We also derive a new upper bound on how well spatial frequencies can be preserved over the depth of field. Our results show that by capturing the optimal number of photos, a standard camera can achieve performance at the level of more complex computational cameras, in all but the most demanding of cases. We also show that computational cameras, although specifically designed to improve one-shot performance, generally benefit from capturing multiple photos as well.

See Also:

Download slides icon Download slides: nipsworkshops2010_hasinoff_obn_01.pdf (6.2┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: