Structured Determinantal Point Processes

author: Alex Kulesza, School of Engineering and Applied Science, University of Pennsylvania
published: March 25, 2011,   recorded: December 2010,   views: 262
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

We present a novel probabilistic model for distributions over sets of structures -- for example, sets of sequences, trees, or graphs. The critical characteristic of our model is a preference for diversity: sets containing dissimilar structures are more likely. Our model is a marriage of structured probabilistic models, like Markov random fields and context free grammars, with determinantal point processes, which arise in quantum physics as models of particles with repulsive interactions. We extend the determinantal point process model to handle an exponentially-sized set of particles (structures) via a natural factorization of the model into parts. We show how this factorization leads to tractable algorithms for exact inference, including computing marginals, computing conditional probabilities, and sampling. Our algorithms exploit a novel polynomially-sized dual representation of determinantal point processes, and use message passing over a special semiring to compute relevant quantities. We illustrate the advantages of the model on tracking and articulated pose estimation problems.

See Also:

Download slides icon Download slides: nips2010_kulesza_sdp_01.pdf (1.6 MB)

Download article icon Download article: nips2010_0880.pdf (478.1 KB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: