Approximate Inference in Continuous Determinantal Processes

author: Raja Hafiz Affandi, Wharton School, University of Pennsylvania
published: Nov. 7, 2014,   recorded: January 2014,   views: 1838


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Determinantal point processes (DPPs) are random point processes well-suited for modeling repulsion. In machine learning, the focus of DPP-based models has been on diverse subset selection from a discrete and finite base set. This discrete setting admits an efficient algorithm for sampling based on the eigendecomposition of the defining kernel matrix. Recently, there has been growing interest in using DPPs defined on continuous spaces. While the discrete-DPP sampler extends formally to the continuous case, computationally, the steps required cannot be directly extended except in a few restricted cases. In this paper, we present efficient approximate DPP sampling schemes based on Nystrom and random Fourier feature approximations that apply to a wide range of kernel functions. We demonstrate the utility of continuous DPPs in repulsive mixture modeling applications and synthesizing human poses spanning activity spaces.

See Also:

Download slides icon Download slides: machine_affandi_determinantal_processes_01.pdf (328.8┬áKB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: