The Sample Complexity of Learning the Kernel

author: Shai Ben-David, David R. Cheriton School of Computer Science, University of Waterloo
published: Dec. 20, 2008,   recorded: December 2008,   views: 376
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

The success of kernel based learning algorithms depends upon the suitability of the kernel to the learning task. Ideally, the choice of a kernel should based on prior information of the learner about the task at hand. However, in practice, kernel parameters are being tuned based on available training data. I will discuss the sample complexity overhead associated with such ”learning the kernel” scenarios. I will address the setting in which the training data for the kernel selection is target labeled examples, as well as settings in which this training is based on different types of data, such as unlabeled examples and examples labeled by a different (but related) tasks. Part of this work is joint with Nati Srebro.

See Also:

Download slides icon Download slides: lkasok08_david_tscol_01.pdf (63.9 KB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: