Partial Label Learning via Feature-Aware Disambiguation

author: Xiangnan Kong, Department of Computer Science, Worcester Polytechnic Institute
published: Sept. 25, 2016,   recorded: August 2016,   views: 1537
Categories

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Partial label learning deals with the problem where each training example is represented by a feature vector while associated with a set of candidate labels, among which only one label is valid. To learn from such ambiguous labeling information, the key is to try to disambiguate the candidate label sets of partial label training examples. Existing disambiguation strategies work by either identifying the ground-truth label iteratively or treating each candidate label equally. Nonetheless, the disambiguation process is generally conducted by focusing on manipulating the label space, and thus ignores making full use of potentially useful information from the feature space. In this paper, a novel two-stage approach is proposed to learning from partial label examples based on feature-aware disambiguation. In the first stage, the manifold structure of feature space is utilized to generate normalized labeling confidences over candidate label set. In the second stage, the predictive model is learned by performing regularized multi-output regression over the generated labeling confidences. Extensive experiments on artificial as well as real-world partial label data sets clearly validate the superiority of the proposed feature-aware disambiguation approach.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: