People, Computers, and The Hot Mess of Real Data

author: Joseph M. Hellerstein, Department of Electrical Engineering and Computer Sciences, UC Berkeley
published: Aug. 31, 2016,   recorded: August 2016,   views: 2203

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


In practice, end-to-end data analysis is rarely a cleanly engineered process. Acquiring data can be tricky. Data assessment, wrangling and feature extraction are time-consuming and subjective. Models and algorithms used to derive data products are highly contextualized by time-varying properties of data sources, code and application needs. All of these issues would ideally benefit from an organizational view, but are often driven by individual users.

Viewed holistically, both agile analytics and the establishment of analytic pipelines involve interactions between people, computation and infrastructure. In this talk I’ll share some anecdotes from our research, user studies, and field experience with companies (Trifacta, Captricity), as well as an emerging open-source project (Ground).

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: