Personalized PageRank based Community Detection

author: David F. Gleich, Department of Computer Science, Purdue University
published: Sept. 27, 2013,   recorded: August 2013,   views: 4162


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Personalized PageRank is a reasonably well known technique to find a community in a network starting from a single node. It works by approximating the stationary distribution of a resetting random-walk and using that stationary distribution to estimate the presence of nearby cuts in the graph. I'll discuss recent work on how to find use a personalized PageRank community to quickly estimate the sets of best conductance anywhere in the graph as well as how to find a good set of seeds to cover the entire graph with personalized PageRank communities.

See Also:

Download slides icon Download slides: kdd2013_gleich_community_detection_01.pdf (11.0┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: