Diagnosing Memory Leaks using Graph Mining on Heap Dumps

author: Evan Kyle Maxwell, Department of Computer Science, Virginia Polytechnic Institute and State University
published: Oct. 1, 2010,   recorded: July 2010,   views: 326
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

Memory leaks are caused by software programs that prevent the reclamation of memory that is no longer in use. They can cause significant slowdowns, exhaustion of available storage space and, eventually, application crashes. Detecting memory leaks is challenging because real-world applications are built on multiple layers of software frameworks, making it difficult for a developer to know whether observed references to objects are legitimate or the cause of a leak. We present a graph mining solution to this problem wherein we analyze heap dumps to automatically identify subgraphs which could represent potential memory leak sources. Although heap dumps are commonly analyzed in existing heap profiling tools, our work is the first to apply a graph grammar mining solution to this problem. Unlike classical graph mining work, we show that it suffices to mine the dominator tree of the heap dump, which is significantly smaller than the underlying graph. Our approach identifies not just leaking candidates and their structure, but also provides aggregate information about the access path to the leaks. We demonstrate several synthetic as well as real-world examples of heap dumps for which our approach provides more insight into the problem than state-of-the-art tools such as Eclipse's MAT.

See Also:

Download slides icon Download slides: kdd2010_maxwell_dmlu_01.pdf (405.5┬áKB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: