Scalable Similarity Search with Optimized Kernel Hashing

author: Junfeng He, Department of Electrical Engineering, Columbia University
published: Oct. 1, 2010,   recorded: July 2010,   views: 3400

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Scalable similarity search is the core of many large scale learning or data mining applications. Recently, many research results demonstrate that one promising approach is creating compact and efficient hash codes that preserve data similarity. By efficient, we refer to the low correlation (and thus low redundancy) among generated codes. However, most existing hash methods are designed only for vector data. In this paper, we develop a new hashing algorithm to create efficient codes for large scale data of general formats with any kernel function, including kernels on vectors, graphs, sequences, sets and so on. Starting with the idea analogous to spectral hashing, novel formulations and solutions are proposed such that a kernel based hash function can be explicitly represented and optimized, and directly applied to compute compact hash codes for new samples of general formats. Moreover, we incorporate efficient techniques, such as Nystrom approximation, to further reduce time and space complexity for indexing and search, making our algorithm scalable to huge data sets. Another important advantage of our method is the ability to handle diverse types of similarities according to actual task requirements, including both feature similarities and semantic similarities like label consistency. We evaluate our method using both vector and non-vector data sets at a large scale up to 1 million samples. Our comprehensive results show the proposed method outperforms several state-of-the-art approaches for all the tasks, with a significant gain for most tasks.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: