Fast Approximate Spectral Clustering

author: Donghui Yan, Department of Statistics, UC Berkeley
published: Sept. 14, 2009,   recorded: June 2009,   views: 488
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Spectral clustering refers to a flexible class of clustering procedures that can produce high-quality clusterings on small data sets but which has limited applicability to large-scale problems due to its computational complexity of O(n3) in general, with n the number of data points. We extend the range of spectral clustering by developing a general framework for fast approximate spectral clustering in which a distortion-minimizing local transformation is first applied to the data. This framework is based on a theoretical analysis that provides a statistical characterization of the effect of local distortion on the mis-clustering rate. We develop two concrete instances of our general framework, one based on local k-means clustering (KASP) and one based on random projection trees (RASP). Extensive experiments show that these algorithms can achieve significant speedups with little degradation in clustering accuracy. Specifically, our algorithms outperform k-means by a large margin in terms of accuracy, and run several times faster than approximate spectral clustering based on the Nystrom method, with comparable accuracy and significantly smaller memory footprint. Remarkably, our algorithms make it possible for a single machine to spectral cluster data sets with a million observations within several minutes.

See Also:

Download slides icon Download slides: kdd09_yan_fasc_01.pdf (256.3┬áKB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: