WhereNext: a Location Predictor on Trajectory Pattern Mining

author: Roberto Trasarti, Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo", National Research Council (CNR)
published: Sept. 14, 2009,   recorded: June 2009,   views: 5425
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

The pervasiveness of mobile devices and location based services is leading to an increasing volume of mobility data. This side effect provides the opportunity for innovative methods that analyze the behaviors of movements.

In this paper we propose WhereNext, which is a method aimed at predicting with a certain level of accuracy the next location of a moving object. The prediction uses previously extracted movement patterns named Trajectory Patterns, which are a concise representation of behaviors of moving objects as sequences of regions frequently visited with a typical travel time.

A decision tree, named T-pattern Tree, is built and evaluated with a formal training and test process. The tree is learned from the Trajectory Patterns that hold a certain area and it may be used as a predictor of the next location of a new trajectory finding the best matching path in the tree. Three different best matching methods to classify a new moving object are proposed and their impact on the quality of prediction is studied extensively.

Using Trajectory Patterns as predictive rules has the following implications: (I) the learning depends on the movement of all available objects in a certain area instead of on the individual history of an object; (II) the prediction tree intrinsically contains the spatio-temporal properties that have emerged from the data and this allows us to define matching methods that striclty depend on the properties of such movements.

In addition, we propose a set of other measures, that evaluate a priori the predictive power of a set of Trajectory Patterns. This measures were tuned on a real life case study. Finally, an exhaustive set of experiments and results on the real dataset are presented.

See Also:

Download slides icon Download slides: kdd09_trasarti_wnlptpm_01.ppt (4.9┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: