Enriching Knowledge Bases with Counting Quantifiers

author: Paramita Mirza, Max Planck Institut Informatik, Max Planck Institute
published: Nov. 22, 2018,   recorded: October 2018,   views: 3
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Information extraction traditionally focuses on extracting relations between identifiable entities, such as <Monterey, locatedIn, California>. Yet, texts often also contain Counting information, stating that a subject is in a specific relation with a number of objects, without mentioning the objects themselves, for example, "California is divided into 58 counties". Such counting quantifiers can help in a variety of tasks such as query answering or knowledge base curation, but are neglected by prior work. This paper develops the first full-fledged system for extracting counting information from text, called CINEX. We employ distant supervision using fact counts from a knowledge base as training seeds, and develop novel techniques for dealing with several challenges: (i) non-maximal training seeds due to the incompleteness of knowledge bases, (ii) sparse and skewed observations in text sources, and (iii) high diversity of linguistic patterns. Experiments with five human-evaluated relations show that CINEX can achieve 60% average precision for extracting counting information. In a large-scale experiment, we demonstrate the potential for knowledge base enrichment by applying CINEX to 2,474 frequent relations in Wikidata. CINEX can assert the existence of 2.5M facts for 110 distinct relations, which is 28% more than the existing Wikidata facts for these relations.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: