Impact analysis of data placement strategies on query efforts in distributed RDF stores

author: Daniel Janke, Institute for Web Science and Technologies (WeST), University of Koblenz-Landau
published: Nov. 22, 2018,   recorded: October 2018,   views: 1
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

In the last years, scalable RDF stores in the cloud have been developed, where graph data is distributed over compute and storage nodes for scaling efforts of query processing and memory needs. One main challenge in these RDF stores is the data placement strategy that can be formalized in terms of graph covers. These graph covers determine whether (a) the triples distribution is well-balanced over all storage nodes (storage balance) (b) different query results may be computed on several compute nodes in parallel (vertical parallelization) and (c) individual query results can be produced only from triples assigned to few — ideally one — storage node (horizontal containment). We analyse the impact of three most commonly used graph cover strategies in these terms and found out that balancing query workload reduces the query execution time more than reducing data transfer over network. To this end, we present our novel benchmark and open source evaluation platform Koral.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: