Mining Hypotheses from Data in OWL: Advanced Evaluation and Complete Construction

author: Viachaslau Sazonau, School of Computer Science, University of Manchester
published: Nov. 28, 2017,   recorded: October 2017,   views: 11
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Automated acquisition (learning) of ontologies from data has attracted research interest because it can complement manual, expensive construction of ontologies. We investigate the problem of General Terminology Induction in OWL, i.e. acquiring general, expressive TBox axioms (hypotheses) from an ABox (data). We define novel measures designed to rigorously evaluate the quality of hypotheses while respecting the standard semantics of OWL. We propose an informed, data-driven algorithm that constructs class expressions for hypotheses in OWL and guarantees completeness. We empirically evaluate the quality measures on two corpora of ontologies and run a case study with a domain expert to gain insight into applicability of the measures and acquired hypotheses. The results show that the measures capture different quality aspects and not only correct hypotheses can be interesting.

See Also:

Download slides icon Download slides: iswc2017_sazaonau_mining_hypotheses_01.pdf (2.8┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: