Inference in a Partially Observed Queuing Model with Applications in Ecology

author: Kevin Winner, College of Information and Computer Sciences, University of Massachusetts Amherst
published: Sept. 27, 2015,   recorded: July 2015,   views: 1598

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


We consider the problem of inference in a probabilistic model for transient populations where we wish to learn about arrivals, departures, and population size over all time, but the only available data are periodic counts of the population size at specific observation times. The underlying model arises in queueing theory (as an M/G/inf queue) and also in ecological models for short-lived animals such as insects. Our work applies to both systems. Previous work in the ecology literature focused on maximum likelihood estimation and made a simplifying independence assumption that prevents inference over unobserved random variables such as arrivals and departures. The contribution of this paper is to formulate a latent variable model and develop a novel Gibbs sampler based on Markov bases to perform inference using the correct, but intractable, likelihood function. We empirically validate the convergence behavior of our sampler and demonstrate the ability of our model to make much finer-grained inferences than the previous approach.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: