Functional Subspace Clustering with Application to Time Series

author: Yan Liu, Computer Science Department, University of Southern California
published: Sept. 27, 2015,   recorded: July 2015,   views: 2213
Categories

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Functional data, where samples are random functions, are increasingly common and important in a variety of applications, such as health care and traffic analysis. They are naturally high dimensional and lie along complex manifolds. These properties warrant use of the subspace assumption, but most state-of-the-art subspace learning algorithms are limited to linear or other simple settings. To address these challenges, we propose a new framework called Functional Subspace Clustering (FSC). FSC assumes that functional samples lie in deformed linear subspaces and formulates the subspace learning problem as a sparse regression over operators. The resulting problem can be efficiently solved via greedy variable selection, given access to a fast deformation oracle. We provide theoretical guarantees for FSC and show how it can be applied to time series with warped alignments. Experimental results on both synthetic data and real clinical time series show that FSC outperforms both standard time series clustering and state-of-theart subspace clustering.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: