Spectral Clustering with Inconsistent Advice

author: Tom Coleman, The University of Melbourne
published: Aug. 4, 2008,   recorded: July 2008,   views: 3931


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Clustering with advice (often known as constrained clustering) has been a recent focus of the data mining community. Success has been achieved incorporating advice into the k-means framework, as well as spectral clustering. Although the theory community has explored inconsistent advice, it has not yet been incorporated into spectral clustering. Extending work of De Bie and Cristianini, we set out a framework for finding minimum normalized cuts, subject to inconsistent advice. Our results suggest that the framework will be successful in many situations.

See Also:

Download slides icon Download slides: icml08_coleman_scwia_01.pdf (1.8┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: