POWLA: Modeling Linguistic Corpora in OWL/DL

author: Christian Chiarcos, University of Southern California
published: July 4, 2012,   recorded: May 2012,   views: 3962


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


This paper describes POWLA, a formalism to formalize linguistic corpora in OWL/DL. POWLA is based on data models currently developed by the NLP community to overcome the heterogeneity of linguistic annotation (Ide and Pustejovsky 2010), in particular, PAULA, an XML standoff format developed out of early sketches of the Linguistic Annotation Framework (LAF, Ide and Romary 2004) which is currently developed within ISO TC37/SC4. These data models are defined as specializations of directed acyclic (hyper)graphs, and it is claimed that every kind of linguistic annotation can be represented as a directed (hyper)graph (Bird and Liberman 2001). Linguistic corpora can thus be naturally linearized in RDF. Unlike earlier approaches to model generic data models for linguistic annotations by means of Semantic Web standards (e.g., Cassidy 2010), POWLA augments the RDF linearization of linguistic data with a data model formalized in an OWL/DL ontology that defines data types for primary data, annotations and linguistic metadata, as well as consistency constraints on linguistic corpora. Unlike other approaches to model linguistic corpora in OWL/DL (e.g., Burchardt et al. 2008), POWLA is not specific to a particular type of annotation, but it implements a generic data model. This genericity is illustrated here for the conversion of GrAF (the XML linearization of the Linguistic Annotation Format, Ide and Suderman 2007) to POWLA. That POWLA preserves the linguistic information conveyed in the original GrAF data as shown by an experient to emulate ANNIS-QL, a query language specifically designed for heterogeneous and richly annotated linguistic corpora (Chiarcos et al. 2008), by means of SPARQL macros on POWLA data. Finally, the paper identifies advantages and disadvantages of OWL/RDF linearizations of generic data models for linguistic corpora (and in particular, POWLA) as compared to traditional XML standoff formats (Ide and Suderman 2007, Chiarcos et al. 2008).

See Also:

Download slides icon Download slides: eswc2012_chiarcos_powla_01.pdf (1.3┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: