Feature Selection for Density Level-Sets

author: Ulf Brefeld, Leuphana University of Lüneburg
published: Oct. 20, 2009,   recorded: September 2009,   views: 2731

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

A frequent problem in density level-set estimation is the choice of the right features that give rise to compact and concise representations of the observed data. We present an efficient feature selection method for density level-set estimation where optimal kernel mixing coefficients and model parameters are determined simultaneously. Our approach generalizes one-class support vector machines and can be equivalently expressed as a semi-infinite linear program that can be solved with interleaved cutting plane algorithms. The experimental evaluation of the new method on network intrusion detection and object recognition tasks demonstrate that our approach not only attains competitive performance but also spares practitioners from a priori decisions on feature sets to be used.

See Also:

Download slides icon Download slides: ecmlpkdd09_brefeld_fsdls_01.pdf (499.6 KB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: