Top-down Neural Attention by Excitation Backprop

author: Stan Sclaroff, Department of Computer Science, Boston University
published: Oct. 24, 2016,   recorded: October 2016,   views: 23
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

We aim to model the top-down attention of a Convolutional Neural Network (CNN) classifier for generating task-specific attention maps. Inspired by a top-down human visual attention model, we propose a new backpropagation scheme, called Excitation Backprop, to pass along top-down signals downwards in the network hierarchy via a probabilistic Winner-Take-All process. Furthermore, we introduce the concept of contrastive attention to make the top-down attention maps more discriminative. In experiments, we demonstrate the accuracy and generalizability of our method in weakly supervised localization tasks on the MS COCO, PASCAL VOC07 and ImageNet datasets. The usefulness of our method is further validated in the text-to-region association task. On the Flickr30k Entities dataset, we achieve promising performance in phrase localization by leveraging the top-down attention of a CNN model that has been trained on weakly labeled web images.

See Also:

Download slides icon Download slides: eccv2016_sclaroff_excitation_backprop_01.pdf (1.9┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: