Blind Deblurring Using Internal Patch Recurrence

author: Tomer Michaeli, Faculty of Mathematics and Computer Science, Weizmann Institute of Science
published: Oct. 29, 2014,   recorded: September 2014,   views: 4421


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Recurrence of small image patches across different scales of a natural image has been previously used for solving ill-posed problems (e.g. super- resolution from a single image). In this paper we show how this multi-scale property can also be used for “blind-deblurring”, namely, removal of an unknown blur from a blurry image. While patches repeat ‘as is’ across scales in a sharp natural image, this cross-scale recurrence significantly diminishes in blurry images. We exploit these deviations from ideal patch recurrence as a cue for recovering the underlying (unknown) blur kernel. More specifically, we look for the blur kernel k, such that if its effect is “undone” (if the blurry image is deconvolved with k), the patch similarity across scales of the image will be maximized. We report extensive experimental evaluations, which indicate that our approach compares favorably to state-of-the-art blind deblurring methods, and in particular, is more robust than them.

See Also:

Download slides icon Download slides: eccv2014_michaeli_blind_deblurring_01.pdf (2.5 MB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: