Learning Sparsely Used Overcomplete Dictionaries

author: Prateek Jain, Nuance Communications, Inc.
published: July 15, 2014,   recorded: June 2014,   views: 2931


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


We consider the problem of learning sparsely used overcomplete dictionaries, where each observation is a sparse combination of elements from an unknown overcomplete dictionary. We establish exact recovery when the dictionary elements are mutually incoherent. Our method consists of a clustering-based initialization step, which provides an approximate estimate of the true dictionary with guaranteed accuracy. This estimate is then refined via an iterative algorithm with the following alternating steps: 1) estimation of the dictionary coefficients for each observation through ℓ1 minimization, given the dictionary estimate, and 2) estimation of the dictionary elements through least squares, given the coefficient estimates. We establish that, under a set of sufficient conditions, our method converges at a linear rate to the true dictionary as well as the true coefficients for each observation.

See Also:

Download slides icon Download slides: colt2014_jain_learning.pdf (764.4 KB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: