Neyman-Pearson classification under a strict constraint

author: Philippe Rigollet, Department of Mathematics, Massachusetts Institute of Technology, MIT
published: Aug. 2, 2011,   recorded: July 2011,   views: 4992


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Motivated by problems of anomaly detection, this paper implements the Neyman-Pearson paradigm to deal with asymmetric errors in binary classification with a convex loss. Given a finite collection of classifiers, we combine them and obtain a new classifier that satisfies simultaneously the two following properties with high probability: (i), its probability of type I error is below a pre-specified level and (ii), it has probability of type II error close to the minimum possible. The proposed classifier is obtained by minimizing an empirical objective subject to an empirical constraint. The novelty of the method is that the classifier output by this problem is shown to satisfy the original constraint on type I error. This strict enforcement of the constraint has interesting consequences on the control of the type II error and we develop new techniques to handle this situation. Finally, connections with chance constrained optimization are evident and are investigated.

See Also:

Download slides icon Download slides: colt2011_rigollet_strict_01.pdf (361.2┬áKB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: