Where machine vision needs help from machine learning

author: William T. Freeman, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, MIT
published: Aug. 2, 2011,   recorded: July 2011,   views: 10422


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


I'll describe where computer vision needs advances from computer science and machine learning. This talk will cover where computer vision works well: finding cars and faces, operating in controlled environments, and where it doesn't work well: in the uncontrolled settings of daily life. Several aspects of the problem make it particularly appropriate for machine learning research: we have large datasets of high-dimensional data, so efficient processing is crucial for success. The data are noisy, and we search and analyze images over Internet scales. I'll list a number of computer vision problems, describe their structure, and tell where we need help. This talk was partially crowd-sourced: at recent computer vision conferences, I've asked my colleagues where they felt we needed help from computer science and machine learning, and I'll report on what they said.

See Also:

Download slides icon Download slides: colt2011_freeman_help_01.pdf (15.1┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: